Valade, L., Bousseau, M., Gleizes, A. \& Cassoux, P. (1983). J. Chem. Soc. Chem. Commun. pp. 110-112.
Yao, T.-M., Zuo, J.-L., You, X.-Z., Fun, H.-K., Sivakumar, K. \& Yip, B.-C. (1995). Inorg. Chem. Submitted.

Acta Cryst. (1996). C52, 315-317

Bis(dimethylglyoximato- N, N^{\prime})(isopropyl)(triphenylphosphine)rhodium(III)

Michal Dunal-Jurčo, ${ }^{a}$ Dušan Mikloš, ${ }^{a}$ Ivan Роtoč̃̌ák, ${ }^{a}$ Maik Ludwig and Dirk Steinborn ${ }^{b}$
${ }^{a}$ Department of Inorganic Chemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinského 9, 81237 Bratislava, Slovakia, and ${ }^{b}$ Institut für Anorganische Chemie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 16, 06120 Halle, Germany

(Received 7 March 1995; accepted 6 June 1995)

Abstract

The structure of the title compound, $\left[\mathrm{Rh}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}-\right.$ $\left.\left\{\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right\}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}\right]$, consists of discrete complexes in which the Rh atom has distorted octahedral coordination. The two dimethylglyoximato ligands lie in the equatorial plane and the isopropyl and triphenylphosphine species occupy the axial positions. The Rh atom is displaced by 0.096 (1) \AA from the mean plane through the four oxime N donor atoms towards the P atom. The average $\mathrm{Rh}-\mathrm{N}$ distance is $1.975(10) \AA$, while the axial $\mathrm{Rh}-\mathrm{P}$ and $\mathrm{Rh}-\mathrm{C}$ distances are 2.489 (2) and 2.146 (6) \AA, respectively. Comparison of the results with those obtained previously for other compounds of this type indicates that the trans influence of R in the axial fragment $\mathrm{Ph}_{3} \mathrm{P}-\mathrm{Rh}-R$ is determined by its σ-donor power.

Comment

This work is a continuation of a project aimed at the elucidation of the mutual influence of ligands in organometallic compounds (Steinborn, 1992). The trans influence of σ-organo ligands is of particular interest. We have demonstrated (Steinborn \& Ludwig, 1993a; Ludwig \& Steinborn, 1996) that in complexes $\left[\mathrm{Rh}(\mathrm{dmgH})_{2}\left(\mathrm{PPh}_{3}\right) R\right](\mathrm{dmgH}=$ monoanion of dimethylglyoxime, $\mathrm{PPh}_{3}=$ triphenylphosphine, $R=$ organo group) the trans influence of R, as measured by ${ }^{1} J\left({ }^{103} \mathrm{Rh}-{ }^{31} \mathrm{P}\right)$ coupling constants, is in the unusual order ${ }^{'} \mathrm{Bu} \gg$ cyclohexyl $>^{i} \mathrm{Pr}>\mathrm{CPr}=\mathrm{CH}_{2}>$ $\mathrm{CH}_{2} \mathrm{OMe}>\mathrm{CH}=\mathrm{CHPr}={ }^{i} \mathrm{Bu}={ }^{n} \mathrm{Pr}=\mathrm{Ph}=\mathrm{Et}=$ ${ }^{n} \mathrm{Bu}=\mathrm{CH}=\mathrm{CHPh}>\mathrm{CH}=\mathrm{CH}_{2}>\mathrm{CH}_{2} \mathrm{SiMe}_{3}=\mathrm{Me}>$ $\mathrm{CH}_{2} \mathrm{Cl}=\mathrm{CH}_{2} \mathrm{SPh}=\mathrm{Bz}=\mathrm{CH}_{2} \mathrm{Br}>\mathrm{C} \equiv \mathrm{CPh}$. To investigate the dependence of the trans influence mea-
sured by NMR spectroscopy on the structure of the complexes, we decided to study the structures of the complexes by systematically changing the type of hybridization of the donor orbital ($R=\mathrm{Et}, \mathrm{CH}=\mathrm{CH}_{2}$ and $\mathrm{C}=\mathrm{CPh}$) as well as the branching within the alkyl ligands ($R=\mathrm{Me}, \mathrm{Et},{ }^{i} \mathrm{Pr}$ and ${ }^{'} \mathrm{Bu}$) ($\mathrm{C} \equiv \mathrm{CPh}$: Dunaj-Jurčo, Kettmann, Steinborn \& Ludwig, 1995; $\mathrm{CH}=\mathrm{CH}_{2}$: Dunaj-Jurčo, Kettmann, Steinborn \& Ludwig, 1994; Et: Kettmann, Dunaj-Jurčo, Steinborn \& Ludwig, 1994; 'Bu: Kettmann, Dunaj-Jurčo, Steinborn \& Ludwig, 1996; Me: Potočňák, Dunaj-Jurčo, Ludwig \& Steinborn, 1996). Here we report the structure of the isopropyl complex, (I).

(I)

The $\left[\mathrm{Rh}(\mathrm{dmgH})_{2}\left(\mathrm{PPh}_{3}\right)^{i} \mathrm{Pr}\right]$ complex crystallizes with discrete molecules, in which the Rh atom exhibits distorted octahedral coordination, with four oxime N donors in the equatorial positions. The two dimethylglyoximato ligands are stabilized by two intramolecular hydrogen bonds, acting between O 1 and O 4 $[\mathrm{O} \cdots \mathrm{O}=2.686(7) \AA$ A $]$ and between O 2 and $\mathrm{O} 3[\mathrm{O} \cdots \mathrm{O}=$ 2.692 (7) \AA]. On the basis of the refined H -atom positions, both hydrogen bridges in the $\mathrm{Rh}(\mathrm{dmgH})_{2}$ unit are asymmetric $[\mathrm{O} 1 \cdots \mathrm{H} 4=1.93(7), \mathrm{O} 4-\mathrm{H} 4=0.78(7)$, $\mathrm{O} 3 \cdots \mathrm{H} 2=2.01(7), \mathrm{O} 2-\mathrm{H} 2=0.69(7) \AA \mathrm{A}]$.
The four $\mathrm{Rh}-\mathrm{N}$ bond distances range from 1.963 (5) to $1.990(5) \AA$, with a mean value of $1.975(10) \AA$. This value is larger than those of the vinyl and the tert-butyl derivatives [1.957 (2) and 1.955 (3) \AA, respectively (Dunaj-Jurčo et al., 1994b; Kettmann et al., 1996)] but is similar to those of the phenylacetylide and methyl complexes [1.971 (2) and 1.976 (9) \AA, respectively (Dunaj-Jurčo et al., 1994a; Potočňák et al., 1996)]. As found in other derivatives of the series, the two dmgH^{-}ligands are tilted away from the triphenylphosphine ligand so that their normal vectors make an angle of $9.74(7)^{\circ}$ with each other. As a result, though the four oxime N donors are coplanar to within $\pm 0.002 \AA$, the Rh atom is displaced by 0.0961 (10) \AA from their mean plane toward the \mathbf{P} atom. The dmgH^{-} ligands themselves are also not strictly planar; the lack of planarity originates from twisting of the two halves of the ligand about the central C-C bond, the dihedral angle formed by the planes $\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3$ and $\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 4$ being $2.9(3)^{\circ}$ and that formed by

Fig. 1. ORTEP (Johnson, 1965) drawing of the title compound showing the atom-numbering scheme. Ellipsoids are drawn at the 40% probability level.
the planes $\mathrm{O} 3-\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 7$ and $\mathrm{O} 4-\mathrm{N} 4-\mathrm{C} 6-\mathrm{C} 8$ being $3.6(3)^{\circ}$.

As mentioned above, the trans influence of the axial ligands, i.e. the σ-bonded isopropyl group and PPh_{3} moiety, is of special interest here. The $\mathrm{Rh}-\mathrm{P}$ and $\mathrm{Rh}-$ C bond lengths are 2.489 (2) and 2.146 (6) \AA, respectively, and the $\mathrm{P}-\mathrm{Rh}-\mathrm{C}$ angle is 176.1 (2) ${ }^{\circ}$. Comparison with other $\left[\mathrm{Rh}(\mathrm{dmgH})_{2}\left(\mathrm{PPh}_{3}\right) R\right]$ complexes shows that the $\mathrm{Rh}-\mathrm{C}$ bond length is somewhat longer than that found for the methyl and the ethyl derivatives [2.119 (4) and 2.064 (7) \AA, respectively] but it is considerably shorter than that found for the tert-butyl derivative $[2.216$ (3) \AA], which is in line with the sterical demand of the tert-butyl ligand.

The $\mathrm{Rh}-\mathrm{C}$ distance found in the similar compound [$\mathrm{Rh}(\mathrm{dmgH})_{2}$ (pyridine) $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$] is shorter [2.085 (3) \AA] than the $\mathrm{Rh}-\mathrm{C}$ distance found in the title compound, in agreement with the smaller trans influence of the pyridine ligand in comparison with that of the PPh_{3} group (Pahor et al., 1990). The Rh-P bond distance is determined by the electronic influence of R in the axial direction. This is demonstrated by comparison of the $\mathrm{Rh}-\mathrm{P}$ bond length in the present complex [2.489 (2) \AA], which is similar that in the tert-butyl complex [2.492(1) \AA], with those in the methyl and ethyl analogues [2.454 (1) and 2.461 (2) \AA, respectively]. The former are longer obviously due to increased σ-donating power of the isopropyl and tert-butyl groups relative to the methyl and the ethyl groups.

Experimental

Preparation of the title compound is described by Steinborn \& Ludwig (1993b). The crystal density D_{m} was measured by flotation in water-KI.

Crystal data

$\left[\mathrm{Rh}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)\right.$ -

$$
\left.\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]
$$

$M_{r}=638.49$
Triclinic
$P \overline{1}$
$a=8.815(2) \AA$
$b=10.154$ (2) \AA
$c=17.277(4) \AA$
$\alpha=76.49$ (2) ${ }^{\circ}$
$\beta=87.98(2)^{\circ}$
$\gamma=74.55(2)^{\circ}$
$V=1448.7(6) \AA^{3}$
$Z=2$
$D_{x}=1.464 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.46 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Syntex $P 2_{1}$ diffractometer
$\theta-2 \theta$ scans
Absorption correction: ψ scan (Pavelčík, 1993) $T_{\min }=0.396, T_{\max }=$ 0.520

3802 measured reflections
3802 independent reflections
3211 observed reflections
$[I>2 \sigma(I)]$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0469$
$w R\left(F^{2}\right)=0.1256$
$S=1.073$
3798 reflections
362 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0754 P)^{2}\right.$ +4.0832 P]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 21 reflections $\theta=6.34-12.63^{\circ}$
$\mu=0.672 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.5 \times 0.3 \times 0.25 \mathrm{~mm}$ Brownish yellow

$$
\theta_{\max }=22.50^{\circ}
$$

$$
h=0 \rightarrow 11
$$

$$
k=-12 \rightarrow 13
$$

$$
l=-22 \rightarrow 22
$$

2 standard reflections monitored every 98 reflections intensity decay: none

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
	x	y	2	$U_{\text {eq }}$
Rh	0.14417 (5)	0.09184 (4)	0.23172 (3)	0.0364 (2)
P1	0.1467 (2)	0.31117 (15)	0.27194 (8)	0.0369 (4)
N1	0.1847 (6)	-0.0366 (5)	0.3395 (3)	0.0441 (12)
N2	-0.0712 (5)	0.0965 (5)	0.2666 (3)	0.0458 (12)
N3	0.1040 (6)	0.2033 (5)	0.1209 (3)	0.0446 (12)
N4	0.3603 (5)	0.0706 (5)	0.1928 (3)	0.0416 (12)
O1	0.3294 (5)	-0.1008 (4)	0.3667 (3)	0.0548 (11)
O2	-0.2018 (6)	0.1763 (6)	0.2203 (3)	0.0618 (14)
O3	-0.0402 (5)	0.2707 (4)	0.0938 (2)	0.0553 (11)
04	0.4892 (5)	-0.0074 (5)	0.2398 (3)	0.0552 (12)
C1	0.0601 (8)	-0.0589 (6)	0.3776 (4)	0.050 (2)
C2	-0.0883 (8)	0.0188 (7)	0.3352 (4)	0.052 (2)
C5	0.2283 (8)	0.2041 (6)	0.0762 (4)	0.048 (2)
C6	0.3771 (7)	0.1277 (6)	0.1190 (4)	0.048 (2)
C3	0.0727 (10)	-0.1622 (8)	0.4555 (4)	0.073 (2)
C4	-0.2448 (9)	0.0091 (10)	0.3664 (5)	0.084 (2)
C7	0.2125 (9)	0.2732 (8)	-0.0100 (4)	0.064 (2)
C8	0.5336 (8)	0.1163 (8)	0.0822 (4)	0.070 (2)
C11	0.2383 (7)	0.3088 (6)	0.3660 (3)	0.0419 (14)

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.049 \\
& \Delta \rho_{\max }=2.433 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.646 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: none Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

C12	$0.3513(7)$	$0.1936(6)$	$0.4050(3)$	$0.0439(14)$
C13	$0.4287(8)$	$0.1981(7)$	$0.4715(4)$	$0.051(2)$
C14	$0.3956(9)$	$0.3137(8)$	$0.5001(4)$	$0.065(2)$
C15	$0.2822(13)$	$0.4258(9)$	$0.4638(6)$	$0.114(4)$
C16	$0.2043(11)$	$0.4252(8)$	$0.3967(5)$	$0.097(3)$
C21	$-0.0475(7)$	$0.4309(6)$	$0.2784(3)$	$0.0426(14)$
C22	$-0.1515(8)$	$0.3792(7)$	$0.3299(4)$	$0.055(2)$
C23	$-0.2945(9)$	$0.4642(10)$	$0.3431(5)$	$0.072(2)$
C24	$-0.3362(10)$	$0.6010(11)$	$0.3042(5)$	$0.083(3)$
C25	$-0.2366(11)$	$0.6560(9)$	$0.2535(5)$	$0.083(3)$
C26	$-0.0917(9)$	$0.5720(7)$	$0.2404(4)$	$0.064(2)$
C31	$0.2563(7)$	$0.4090(5)$	$0.1990(3)$	$0.0401(14)$
C32	$0.4101(7)$	$0.4017(6)$	$0.2141(4)$	$0.0475(15)$
C33	$0.4989(9)$	$0.4675(7)$	$0.1572(4)$	$0.060(2)$
C34	$0.4255(9)$	$0.5452(7)$	$0.0858(4)$	$0.063(2)$
C35	$0.2723(9)$	$0.5530(7)$	$0.0688(4)$	$0.057(2)$
C36	$0.1883(8)$	$0.4829(6)$	$0.1242(3)$	$0.048(2)$
C40	$0.1368(9)$	$-0.0887(7)$	$0.1891(5)$	$0.067(2)$
C41	$0.0192(13)$	$-0.0651(9)$	$0.1258(6)$	$0.110(4)$
C42	$0.2441(18)$	$-0.2119(10)$	$0.2171(10)$	$0.203(9)$

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Rh}-\mathrm{N} 2$	$1.963(5)$	$\mathrm{P} 1-\mathrm{C} 11$	$1.832(6)$
$\mathrm{Rh}-\mathrm{N} 4$	$1.972(5)$	$\mathrm{N} 1-\mathrm{O} 1$	$1.315(6)$
$\mathrm{Rh}-\mathrm{N} 3$	$1.974(5)$	$\mathrm{N} 2-\mathrm{O} 2$	$1.374(7)$
$\mathrm{Rh}-\mathrm{N} 1$	$1.990(5)$	$\mathrm{N} 3-\mathrm{O} 3$	$1.316(6)$
$\mathrm{Rh}-\mathrm{C} 40$	$2.146(6)$	$\mathrm{N} 4-\mathrm{O} 4$	$1.365(6)$
$\mathrm{Rh}-\mathrm{P} 1$	$2.489(2)$	$\mathrm{C} 40-\mathrm{C} 42$	$1.346(11)$
$\mathrm{P} 1-\mathrm{C} 31$	$1.830(6)$	$\mathrm{C} 40-\mathrm{C} 41$	$1.468(10)$
$\mathrm{P} 1-\mathrm{C} 21$	$1.833(6)$		
$\mathrm{N} 2-\mathrm{Rh}-\mathrm{N} 4$	$174.3(2)$	$\mathrm{N} 3-\mathrm{Rh}-\mathrm{P} 1$	$88.19(14)$
$\mathrm{N} 2-\mathrm{Rh}-\mathrm{N} 3$	$101.1(2)$	$\mathrm{N} 1-\mathrm{Rh}-\mathrm{P} 1$	$97.31(14)$
$\mathrm{N} 4-\mathrm{Rh}-\mathrm{N} 3$	$78.7(2)$	$\mathrm{C} 40-\mathrm{Rh}-\mathrm{P} 1$	$176.1(2)$
$\mathrm{N} 2-\mathrm{Rh}-\mathrm{N} 1$	$78.7(2)$	$\mathrm{C} 31-\mathrm{P} 1-\mathrm{C} 21$	$107.0(3)$
$\mathrm{N} 4-\mathrm{Rh}-\mathrm{N} 1$	$100.9(2)$	$\mathrm{C} 31-\mathrm{P} 1-\mathrm{C} 11$	$101.7(3)$
$\mathrm{N} 3-\mathrm{Rh}-\mathrm{N} 1$	$174.5(2)$	$\mathrm{C} 21-\mathrm{P} 1-\mathrm{C} 11$	$100.2(3)$
$\mathrm{N} 2-\mathrm{Rh}-\mathrm{C} 40$	$85.9(3)$	$\mathrm{C} 31-\mathrm{P} 1-\mathrm{Rh}$	$108.8(2)$
$\mathrm{N} 4-\mathrm{Rh}-\mathrm{C} 40$	$88.4(3)$	$\mathrm{C} 21-\mathrm{P} 1-\mathrm{Rh}$	$115.3(2)$
$\mathrm{N} 3-\mathrm{Rh}-\mathrm{C} 40$	$88.0(2)$	$\mathrm{C} 11-\mathrm{P} 1-\mathrm{Rh}$	$122.3(2)$
$\mathrm{N} 1-\mathrm{Rh}-\mathrm{C} 40$	$86.6(2)$	$\mathrm{C} 42-\mathrm{C} 40-\mathrm{C} 41$	$124.3(7)$
$\mathrm{N} 2-\mathrm{Rh}-\mathrm{P} 1$	$94.33(15)$	$\mathrm{C} 42-\mathrm{C} 40-\mathrm{Rh}$	$119.3(6)$
$\mathrm{N} 4-\mathrm{Rh}-\mathrm{P} 1$	$91.33(14)$	$\mathrm{C} 41-\mathrm{C} 40-\mathrm{Rh}$	$116.2(5)$

Intensities were corrected for Lorentz and polarization factors and absorption using XP21 (with a modified version of EMPABS) (Pavelčík, 1993). The structure was solved by heavy-atom methods with XFPS (Pavelčík, Rizzoli \& Andreeti, 1990) and subsequent Fourier syntheses using SHELXL93 (Sheldrick, 1993). Anisotropic displacement parameters were refined for all non-H atoms. Highly anisotropic displacement parameters of atoms C41 and C42 indicate possible disorder of the isopropyl group orientation around the $\mathrm{Rh}-\mathrm{C} 40$ bond, but splitting of C 41 and C 42 into two or more corresponding pairs did not yield better results. Both (O)H atoms were located from the difference Fourier map and refined with isotropic displacement parameters fixed at $0.06 \AA^{2}$. The (C)H atoms were apparent in the difference map, but they were included in the refinement as riding atoms in calculated positions with isotropic displacement parameters. The only exception were the isopropyl H atoms which were not included because of high anisotropic displacement parameters of C41 and C42 atoms. $\Delta \rho_{\max }=2.4 \mathrm{e} \AA^{-3}$ near Rh ($1.57 \AA$) allows no reasonable crystallochemical explanation and is considered to be false. Geometrical analysis was performed using PARST (Nardelli, 1983) and SHELXL93.

Financial support from the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the Ministry of Education, Slovak Republik (grant No. $1 / 1412 / 94$), is gratefully acknowledged.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1124). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Dunaj-Jurčo, M., Kettmann, V., Steinborn, D. \& Ludwig, M. (1994). Acta Cryst. C50, 1427-1430.
Dunaj-Jurčo, M., Kettmann, V., Steinborn, D. \& Ludwig, M. (1995). Acta Cryst. C51, 210-213.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kettmann, V., Dunaj-Jurčo, M., Steinborn, D. \& Ludwig, M. (1994). Acta Cryst. C50, 1239-1241.
Kettmann, V., Dunaj-Jurčo, M., Steinborn, D. \& Ludwig, M. (1996). Acta Cryst. C52. In the press.
Ludwig, M. \& Steinborn, D. (1996). In preparation.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Pahor, N. B., Dreos-Garlatti, R., Geremia, S., Randaccio, L., Tauzher, G. \& Zangrando, E. (1990). Inorg. Chem. 29, 3437-3441.

Pavelčík, F. (1993). XP21. Comenius University, Bratislava, Slovakia.
Pavelčík, F., Rizzoli, C. \& Andreetti, G. D. (1990). XFPS. A Computer Program for Automatic Structure Determination. Comenius University, Bratislava, Slovakia.
Potočňák, I., Dunaj-Jurčo, M., Ludwig, M. \& Steinborn, D. (1996). In preparation.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Steinborn, D. (1992). Angew. Chem. 104, 392-412; Angew. Chem. Int. Ed. Engl. 31, 384-408.
Steinborn, D. \& Ludwig, M. (1993a). Contributions to the Development of Coordination Chemistry, Fourteenth Conference on Coordination Chemistry, pp. 343-348. Smolenice, Slovakia.
Steinborn, D. \& Ludwig, M. (1993b). J. Organomet. Chem. 463, 6571.

Acta Cryst. (1996). C52, 317-319

Tetraethylammonium Bis(isothiocyanato)triphenylstannate

Philip J. Cox ${ }^{a}$ and James L. Wardell ${ }^{b}$
${ }^{a}$ School of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB9 IFR, Scotland, and ${ }^{b}$ Department of Chemistry, Aberdeen University, Meston Walk, Old Aberdeen AB9 2UE, Scotland

(Received 22 May 1995; accepted II July 1995)

Abstract

The $\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}(\mathrm{NCS})_{2}\right]^{-}$organotin anion of the title compound, $\left(\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}\right)\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}(\mathrm{NCS})_{2}\right]$, lies on a crystallographic twofold axis and the trigonal bipyramidal

